Republic of the Philippines OFFICE OF THE PRESIDENT COMMISSION ON HIGHER EDUCATION ### NOTICE TO THE PUBLIC The Commission on Higher Education (CHED) through the Technical Panel for Maritime Education (TPME) will conduct a Public Hearing on the proposed revised Policies, Standards and Guidelines (PSGs) for the Bachelor of Science in Naval Architecture and Marine Engineering (BSNAME) program on May 10, 2019 from 08:00am to 05:00pm. The venue for the said meeting will be announced on a later date. Relative to this, heads/representatives of higher education institutions (HEIs) offering the BSNAME program, representatives from concerned government agencies, industry, professional organizations and other stakeholders, and CHEDRO Directors/Supervisors in-Charge of the maritime programs are invited to attend the said public hearing. A copy of the proposed **revised PSG for BSNAME** may be downloaded from the CHED website (www.ched.gov.ph click Issuances-Public Consultations/Orientations) **on May 3, 2019** onwards. Funds for travel and other incidental expenses of the participants from the CHED Regional Offices (one representative per CHEDRO) will be transferred to their respective offices (except NCR, IV and MIMAROPA). Related expenses of participants coming from public HEIs shall be charged against their local funds subject to usual accounting and auditing rules and regulations. Participants from private HEIs and other stakeholders shall have to make arrangements on their travel expenses with their respective institutions. Food during the public hearing shall be provided by CHED. To ascertain logistic preparations, only two (2) representatives per HEI shall be allowed to attend this activity. CHED Regional Offices are requested to forward confirmations of participants from their respective regions to CHED-Office of Programs and Standards Development not later than five (5) days before the date of public hearing. For confirmation or inquiries, please contact Ms. Mutya Mangubat or Ms. Niña Palaganas at telephone number (02) 441-1258 or email ched.meu.stcw@gmail.com. For immediate and wide dissemination. J. PROSPERO E. DE VERA III, DPA Chairman Commission on Higher Education | CHED MEMORANDUM ORDER (| CMO) | |-------------------------|------| | No | | | Series 2019 | | SUBJECT: POLICIES, STANDARDS AND GUIDELINES FOR THE BACHELOR OF SCIENCE IN NAVAL ARCHITECTURE AND MARINE ENGINEERING (BSNAME) PROGRAM | In acco | ordance with t | he pertinen | t provision | of Rep | oublic Ad | ct (RA) No | . 7722, | |--------------------------------|------------------|-----------------|-------------|--------|-----------|-------------|----------| | otherwise kno | wn as the " | Higher Edu | cation Act | of 1 | 994," RA | 4 10698 c | and Its | | Implementing | Rules and Gui | delines whic | ch regulate | es and | l modern | izes the pr | actice | | of naval arch | itecture in the | e Philippine | s and by v | virtue | of Comr | mission en | Banc | | | | | | | | | | | Resolution Nu | mber | _ dated | | | _, the fo | llowing p | olicies, | | Resolution Nu
standards and | | | | | | • . | | | | l guidelines (PS | SG) for the E | Bachelor of | Scier | nce in No | ıval Archit | ecture | ## ARTICLE I ### **SECTION 1** Rationale These policies, standards and guidelines were developed in pursuit of the educational reforms that include the enhanced basic education curriculum through K to 12, the New General Education Curriculum, and the ongoing quality assurance system for the development, recognition and award of qualification of the BSNAME graduates based on the Philippine Qualifications Framework (PQF) Level 6 and International Standards. The herein Policies, Standards and Guidelines (PSG) have been reviewed in accordance with recently approved CMOs, industry needs, latest and future technology trends in the field of naval architecture and marine engineering and simultaneously harmonizing with other professional programs. This PSG emerged as a result of consolidated efforts of the professional organization, academe, industry and other concerned agencies. The PSG shall enable graduates to have entry level competencies after finishing the prescribed number of units. ## ARTICLE II DEFINITION OF TERMS **SECTION 2** The following definitions shall be adopted in the application of these guidelines: **Assessment:** the process of measuring the knowledge, skills or competences of individual learners; - Competence: The combination of knowledge, skills, experience and attitude, that enables an individual to perform a certain function or task. It includes: 1) the cognitive competence involving the use of theory and concepts as well as informal tacit experiential knowledge; 2) functional competence, which involves knowledge, understanding and skills necessary for the proper performance of functions, tasks, duties and responsibilities in a workplace; and, 3) personal competence involving ethical, personal and professional values. - **Course:** an integral component of a degree program with a specific title and description of coverage, learning context and goals, and the learner's responsibilities; - Course Specifications: the minimum requirement for the design, development and delivery of the course. It includes the course code, course descriptive title, credit units, number of lecture and laboratory hours per week, prerequisites/ co-requisites, competencies addressed, course outcomes and references. - Course Syllabus: a collection of elements that shows the plan for the delivery of the course which include competence; topics; intended learning outcomes; teaching and learning activities (TLA); equipment, materials, and teaching aids; references; assessment; allocated number of hours; - Curriculum: the aggregate of courses indicating the systematic sequence of courses i.e. what students expect to know, understand, and be able to do after completing the program that shows minimum number of units required to attain them; a summary of required courses, electives, major courses among others, and the minimum acceptable level of demonstrated achievement (evaluated against assessment criteria) for awarding credits; - **Curriculum Mapping:** is the process of indexing or diagraming a curriculum to identify and address academic gaps, redundancies, and misalignments for purposes of improving the overall coherence of a course of study and by extension and its effectiveness; - **Diploma:** a certificate issued by a higher education institution to a student who has fulfilled all the requirements of a Bachelor's degree. - **Evaluation:** the process of judging the educational quality of higher education institution or program by using assessment results to determine its fitness with the accepted/declared set of standard; - **Learner Outcomes:** clear statements of what the learner expects to know, understand, and do as a result of a learning experience; - **Outcomes-Based Assessment:** is the measure of students' demonstration of their learning based on explicit criteria for assessing each outcome; - Outcomes-Based Education: an educational approach that implies the best way to learn is to first determine what needs to be achieved. Once the desired results or "exit outcomes" have been determined, the strategies, processes, techniques and means are put in place to achieve predetermined goals. In essence, it is working backward with students as the center of the learning -teaching milleu; - **Program Educational Objectives (PEOs)**: Broad statements that describe the career and professional accomplishments that the program is preparing graduates to achieve (ABET, 2016). - **Program Outcomes (POs)**: These are sets of competencies (related knowledge, skills, and attitudes) that all learners are expected to demonstrate after the completion of the curriculum or program. - **Program of Study**: An academic plan towards the attainment of a BSNAME degree. An articulation of courses from 1st year to 4th year level. - **Unit:** One credit unit is equivalent to one (1) hour lecture or two (2) or three (3) hours laboratory. ### ARTICLE III AUTHORITY TO OPERATE ### **SECTION 3. Government Authority** All Private Higher Education Institutions (PHEIs) intending to offer Bachelor of Science in Naval Architecture and Marine Engineering must first secure proper authority from the Commission in accordance with existing rules and regulations. State Universities and Colleges (SUCs), and Local Colleges and Universities (LCUs) should likewise strictly adhere to the provisions in this PSG. **SECTION 4.** Advertisement shall be made only after its authority to operate has been issued by the CHED. # ARTICLE IV GENERAL PROVISIONS **SECTION 5.** The succeeding Articles provide minimum standards, and other requirements and prescriptions. The standards are expressed as the minimum set of desired Program Outcomes which are given in **Article V Section 8 and** a sample curriculum as shown in **Section 13.** The curriculum map in **ANNEX I** was used in designing the curriculum. Using a learner-centered and outcomes-based approach, the appropriate curriculum delivery methods shown in **Article VI Section** 17 was also determined. Based on the curriculum and the means of its delivery, the physical resource requirements for the library, laboratories and other facilities; and the human resource requirements in terms of administration and faculty were determined. # section 6. The HEIs are allowed to enhance the curricula beyond the minimum standards suited to their own contexts and missions provided that they can demonstrate that the same leads to the attainment of the required minimum set of outcomes, albeit by a different route. In the same vein, they have latitude in terms of curriculum delivery and in terms of specification and deployment of human and physical resources as long as they can show that the attainment of the program outcomes and satisfaction of program educational objectives can be assured by the alternative means they propose and provided further that the sequencing of the courses according to pre-requisites and co-requisites are observed. The HEIs can use the CHED Implementation Handbook for Outcomes-Based Education (OBE) and the Institutional Sustainability Assessment (ISA) as a guide in making their submissions for Sections 27 to 32 of Article IX. ### ARTICLE V PROGRAM SPECIFICATIONS ### **SECTION 7. Program Description** ### 7.1 Degree Name The degree program describe herein shall be called Bachelor of Science in Naval Architecture and Marine Engineering (BSNAME). ### 7.2 Nature of the Field of Study Naval architects are professional engineers who possess a Bachelor of Science Degree in Naval Architecture and Marine Engineering and is an engineering discipline dealing with the design, construction, maintenance and operation of marine vessels and structures as well as its machinery and engineering systems. Naval architecture primarily is concerned with the hydrodynamic and hull form characteristics of the ship, the structural design of the hull, its maneuverability characteristics and its ability to operate in the marine environment. Marine engineering primarily is concerned with the engineering systems including the main propulsion plant, the powering and mechanical aspects of ship functions such as steering, anchoring, cargo handling, heating, ventilation, air conditioning, electrical power generation and distribution and communications. ### 7.3 Program Educational Objectives Program Educational Objectives (PEO's) are broad statements that describe what graduates are expected to attain a few years after graduation. Program educational objectives need to be measurable and are based on the needs of shipowners, shipyards and ship repairers, ship recyclers, ship management companies, insurance companies, salvage operators, classification societies, higher education institutions, government agencies and the general public. The program education objectives must be consistent with the mission and vision of the institution and must be regularly reviewed. ### 7.4 Specific Professions/Careers/Occupations for graduates ### 7.4.1 Fields of Specialization - 1. Ship Design - 2. Ship Propulsion - 3. Contracts and Specifications - 4. Regulatory and Classification - 5. Ship Construction - 6. Ship Preservation - 7. Ship Management #### 7.4.2 Career Options - 1. Ship Owner - 2. Ship Designer - 3. Ship and Leisure Craft Builder - 4. Shipyard manager - 5. Classification and Marine Surveyor - 6. Ship Manager - 7. Offshore Designer and Builder - 8. Educator - 9. Marine adjusters and assessors - 10. Salvage Operators ### 11. Marine Consultancy ### 7.5 Allied Fields The following programs and fields of study are allied to BSNAME: Civil Engineering, Structural Engineering, Marine Engineering, Ocean Engineering, Electrical Engineering, Metallurgy, Welding Technology, Computer-Aided Design & Production. ### **SECTION 8 Program Outcomes** A graduate of the Bachelor of Science in Naval Architecture and Marine Engineering (BSNAME) program must have attained, as a minimum, the following minimum set of learning outcomes: ### 8.1 Common to all programs in all types of schools - a) An ability to function in multi-disciplinary and multicultural teams; - b) Act in recognition of professional, social and ethical responsibility; - c) An ability to communicate effectively using both English and Filipino languages; - d) An ability to engage in life-long learning and a recognition of the need to keep current with the latest development in the specific field of specialization; - e) A knowledge on contemporary issues, and; - f) Preserve and promote "Filipino historical and cultural heritage" based on RA 7722. ### 8.2 Common to a horizontal type as defined in CMO46 s2012 - a) Graduates of professional institutions demonstrate a service orientation in one's profession. - b) Graduates of colleges participate in various types of employment, development activities and public discourses, particularly in response to the needs of the communities one serves. - c) Graduates of universities participate in the generation of new knowledge or in research and development projects. Graduates of State Universities and Colleges (SUC's) must, in addition, have the competencies to support "national, regional and local development plans" (RA 7722). A PHEI, at its option, may adopt mission-related program outcomes that are not included in the minimum set. ### 8.3 Specific to BSNAME - a) An ability to apply knowledge of mathematics, science, naval architectural and marine engineering design to solve engineering problems; - b) An ability to design and conduct experiments, as well as to analyze and interpret data; - c) An ability to design floating vessels, its fittings and powering to meet the required specifications within realistic constraints; - d) An ability to identify, formulate and solve naval architectural and marine engineering problems; - e) An understanding of the impact of naval architectural and marine engineering solutions in a global, economic, environmental and societal context; - f) An ability to use techniques, skills and modern engineering tools necessary for naval architecture and marine engineering practice; and - g) A knowledge and understanding of engineering and management principles as a member and leader in a team ### **SECTION 9 Sample Performance Indicators** Performance Indicators are specific, measurable statements identifying the performance(s) required to meet the outcome and can be validated by evidence. | 1 | | Program Outcomes | Performance Indicators | |---|----|---|--| | | a. | An ability to design floating vessels, its fittings and powering to meet the required specifications within realistic constraints | Design floating vessels with adequate intact stability compliant with specifications Design floating vessels with adequate powering using basic and experimental methods in marine hydrodynamics Design floating vessels with auxiliary systems supporting the marine power plant and essential to vessel operations | ### **SECTION 10** Program Assessment and Evaluation In the case of Program Outcomes Assessment, the defined Performance Indicators shall be connected to Key Courses (usually the Demonstrating or "D" courses in the Curriculum Map), and appropriate Assessment Methods (AM) may be applied. These methods may be direct or indirect depending on whether the demonstration of learning was measured by actual observation and authentic work of the student or through gathered opinions from the student or his peers. Refer to sample matrix below. | Performance Indicators | Key Courses | Assessment
Methods | |---|--------------------------------|--------------------------| | Design floating vessels with adequate intact stability compliant with specifications | Intact Stability | Design
Project/Thesis | | Design floating vessels with auxiliary systems supporting the marine power plant and essential to vessel operations | Marine
Auxiliary
Systems | Final
Examination | | 3. Design floating vessels with adequate powering using basic and experimental methods in marine hydrodynamics | Ship
Resistance | Design
Project/Thesis | For the Assessment of Program Educational Objectives, the stakeholders of the program have to be contacted through surveys or focus group discussion to obtain feedback data on the extent of the achievement of the PEOs. Program Evaluation pertains to one or more processes for interpreting the data and evidence accumulated from the assessment. Evaluation determines the extent at which the Program Outcomes and the Program Educational Objectives are achieved by comparing actual achievement versus set targets and standards. Evaluation results in decisions and actions regarding the continuous improvement of the program. Sample Matrix Connecting Assessment Methods with Set Targets and Standards | Key Courses | Assessment Methods | Targets and Standards | |-----------------------------|-----------------------|--| | Intact Stability | Design Project/Thesis | 70% of students get a rating of at least 70% | | Marine Auxiliary
Systems | Final Examination | 70% of students get a rating of at least 70% | | Ship Resistance | Design Project/Thesis | 70% of students get a rating of at least 70% | Other Methods of Program Assessment and Evaluation may be found in the CHED Implementation Handbook for Outcomes-Based Education (OBE) and Institutional Sustainability Assessment (ISA). ### **SECTION 11 Continuous Quality Improvement** - 11.1 The program shall have documented process for assessing and evaluating the extent to which the program educational objectives and student outcomes are being attained. - 11.2 Results of such evaluations shall be systematically utilized as inputs for the continuous quality improvement of the program such as changes in course syllabi, curricula and any other aspects of the program which shall improve the program educational objectives and student outcomes. - **11.3** Feedback to and from all concerned stakeholders shall be maintained as well as adequate supporting resources to ensure the continuous quality improvement of the program. ### ARTICLE VI CURRICULUM ### **SECTION 12** Curriculum Description The BSNAME program shall consist of a minimum total of 193 credit units. The program consists of the general education component following CMO No. 20, series of 2013 the General Education Curriculum: Holistic Understandings, Intellectual and Civic Competencies, professional courses, Physical Education (PE) and the National Service Training Program (NSTP). The Practicum/OJT Course is required to be taken preferably after 2nd or 3rd year. ### **SECTION 13** Sample Curriculum: | Courses | No. of
Courses | Equivalent
Units per
Course | Total
Units | Prereq/
Coreq | |--|-------------------|-----------------------------------|----------------|------------------| | GENERAL EDUCATION COURSES | 18 | | 50 | | | a) Core Courses | 8 | 3 | 4 | | | NGEC 1 - Understanding the Self | | | | | | NGEC 2 - Readings in Philippine History | | | | | | NGEC 3 - The Contemporary World | | | | | | NGEC 4 - Mathematics in the Modern | | | | | | World | | | | | | NGEC 5 - Purposive communication | | | | | | NGEC 6 - Art Appreciation | | | | | | NGEC 7 - Science, Technology, and | | | | | | Society | | | | | | NGEC 8 – Ethics | | | | | | b) Elective | 3 | 3 | 9 | | | *** NGEC 9 – Math, Science, & Technology | | | | | | *** NGEC 10 – Social Sciences & Philosophy | | | | | | *** NGEC 11 – Arts and Humanities | | | | | | Courses | No. of
Courses | Equivalent
Units per
Course | Total
Units | Prereq/
Coreq | |--|-------------------|-----------------------------------|----------------|------------------| | c) Mandated Course/s | 7 | | 17 | | | Rizal - The Life and Works of Dr. Jose Rizal | 1 | 3 | 3 | | | Physical Education (PE) (1, 2, 3, 4) | 4 | 2 | 8 | 1 | | National Service Training Program | 0 | 2 | , | 1 | | (NSTP) 1 and 2 | 2 | 3 | 6 | | | PROFESSIONAL COURSES | 42 | | 140 | | | CALC 1- Differential Calculus | | 3 (3-0) | | | | CALC 2 - Integral Calculus | | 3 (3-0) | | CALC 1 | | CALC 3 - Differential Equation | | 3 (3-0) | | CALC 2 | | DRAW 1 - Ship Drafting 1 | | 2 (0-6) | | | | DRAW 2 - Ship Drafting 2 (Computer- | | | | DD AVA/1 | | aided Drafting) | | 2 (0-6) | | DRAW1 | | ECON - Engineering Economics | | 3 (3-0) | | | | EE 1 - Basic Electrical Engineering | | 3 (2-3) | | | | EE 2 - DC and AC Machinery | | 4 (3-3) | | EE 2 | | ELECTRO - Basic Electronics | | 3 (2-3) | | | | ELEC 1 - General Engineering Elective | | 3 (3-0) | | | | EMAT 1 - Engineering Materials | | 3 (0-3) | | | | ENVI - Environmental Engineering | | 2 (2-0) | | | | FMECH - Fluid Mechanics | | 3 (3-0) | | THERMO 2 | | KMATICS - Kinematics and Dynamics of | | | | THE WISE | | Machines | | 3 (2-3) | | | | MARE 1 - Marine Engineering 1 | | 4 (3-3) | | | | MARE 2 - Marine Engineering 2 | | 4 (3-3) | | MARE 1 | | MARE 3 - Marine Auxiliary Generating | 1 | | | | | System | | 5 (4-3) | | | | MARE 4 - Marine Auxiliary System | | 3 (3-0) | | | | MARE 5 - Ship Propulsion | | 4 (3-3) | | MARE 4 | | MARLAW - Maritime Laws, Rules & Regulations | | 3 (3-0) | | | | MECH 1 - Static of Rigid Bodies | | 3 (3-0) | | | | MECH 2 - Mechanics of Deformable Bodies | | 3 (3-0) | | MECH 1 | | MECH 3 - Dynamics of Rigid Bodies | | 2 (2-0) | | MECH 2 | | MGMT 1 - Engineering Management | | 3 (3-0) | | | | NA 1 - Introduction to Naval Architecture | | 4 (3-3) | | | | and Marine Engineering | | 4 (3-3) | | | | NA 2 - Ship Hydrostatics | | 3 (3-0) | | NA 1 | | NA 3 - Ship Resistance | | 4 (3-3) | | NA 2 | | NA 4 - Intact Stability |] | 4(3-3) | | NA 3 | | NA 5 - Damage Stability | | 5 (3-6) | | NA 4 | | NA 6 - Ship Structural Analysis and Design | | 5 (3-6) | | NA 2
STRUC | | NA 7 - Motion in Waves | | 2 (2-0) | | NA 3 | | Courses | No. of
Courses | Equivalent
Units per
Course | Total
Units | Prereq/
Coreq | |--|-------------------|-----------------------------------|----------------|---------------------------------| | NA 8 - Ship Design 1 | | 5 (2-9) | | Prereq:
NA 1, 2, 3,
and 4 | | . • | | | | Coreq: 5,
6 and
MarE 5 | | NA 9 - Ship Design 2 | | 5 (2-9) | | NA 8 | | NA 10 - Shipyard Processes and
Management | | 3 (2-3) | | NA 6 | | NA 11- Contracts and Specifications | | 3 (3-0) | | | | NA 12 - Marine Inspections & Surveys | | 3 (2-3) | | | | SHIP 1 - Ship Modeling 1 (Mould Lofting) | | 5 (3-6) | | DRAW 2 | | SHIP 2 - Ship Modeling 2 (Computer-
aided Design) | | 3 (2-3) | | SHIP 1 | | SHOP - Workshop Theory and Practices | | 3 (2-3) | | | | STRUC - Structural Theory | | 3 (3-0) | | EMAT 1 | | THERMO 1 - Thermodynamics 1 | | 3 (3-0) | | | | THERMO 2 - Thermodynamics 2 | | 3 (3-0) | | THERMO 1 | | SUMMARY OF UNITS | Total number of Units | |---------------------------|-----------------------| | General Education Courses | 50 | | Professional Courses | 140 | | TOTAL NO. OF UNITS | 193 | ### Notes: - *** NGEC 9 recommended to include topics in Solid Mensuration, Spherical Trigonometry and Integral Calculus - NGEC 10 recommended to include topics in Occupational Health and Safety (include PADAMS, common health problems of seafarers, proper nutrition, lifestyle, and exercise) - *** NGEC 11 recommended to include World Geography and Intercultural Relationship¹ ### **Suggested Elective Courses:** | Elective Courses | , | | Minimum | |--|---|--|--------------| | | | | Credit Units | | Welding Technology | 3 | | 3 | | Marine Inspections and Surveys | 3 | | 3 | | Computer Aided Design and Construction | 3 | | 3 | ### **SECTION 14 Program of Study** The Higher Education Institutions (HEIs) may enrich the model program of study depending on the needs of the industry, provided that all prescribed courses/competencies required in the curriculum outlines are offered and pre-requisites and co-requisites are observed. FIRST YEAR First Semester | | <u>Descriptive Title</u> | Hours | | | Pre- | |-------------------|--|------------|------------|--------------|-----------| | <u>Subj. Code</u> | | <u>LEC</u> | <u>LAB</u> | <u>UNITS</u> | requisite | | CALC1 | Differential Calculus | 3 | 0 | 3 | None | | DRAW1 | Ship Drafting 1 | 0 | 6 | 2 | None | | | Introduction to Naval Architecture and
Marine Engineering | 3 | 3 | 4 | None | | NGEC1 | Understanding the Self | 3 | 0 | 3 | None | | NGEC2 | Readings in Philippine History | 3 | 0 | 3 | None | | NGEC3 | The Contemporary world | 3 | 0 | 3 | None | | PE1 | Team Sports | 1 | 3 | 2 | None | | NSTP1 | NSTP | | | <u>3</u> | None | | | Sub-Total: | 16 | 12 | 23 | | # FIRST YEAR Second Semester | | D | Hours | | | Pre- | |------------|---|-------|------------|--------------|-----------| | Subj. Code | <u>Descriptive Title</u> | | <u>LAB</u> | <u>UNITS</u> | requisite | | CALC2 | Integral Calculus | 3 | 0 | 3 | CALC1 | | DRAW2 | Ship Drafting 2 (Computer-aided Drafting) | 0 | 6 | 2 | Draw 1 | | NGEC4 | Mathematics in the Modern World | 3 | 0 | 3 | None | | NGEC5 | Purposive Communication | 3 | 0 | 3 | None | | NGEC6 | Art Appreciation | 3 | 0 | 3 | None | | NGEC7 | Science, Technology and Society | 3 | 0 | 3 | None | | NGEC9 | Math, Science, & Technology | 3 | 0 | 3 | None | | PE2 | Team Sports | 2 | 0 | 2 | None | | NSTP2 | National Service TP 2 | | | 3 | None | | | Sub-Total: | 20 | 6 | 25 | | # SECOND YEAR First Semester | Course | | | Hours | Pre- | | |--------|---------------------------------|------------|------------|--------------|-----------| | Code | <u>Descriptive Title</u> | <u>LEC</u> | <u>LAB</u> | <u>UNITS</u> | requisite | | EE1 | Basic Electrical Engineering | 2 | 3 | 3 | None | | EMAT1 | Engineering Materials | 3 | 0 | 3 | None | | MARE1 | Marine Engineering 1 | 3 | 3 | 4 | None | | NGEC10 | Social Sciences & Philosophy | 3 | 0 | 3 | None | | SHIP1 | Ship Modeling 1 (Mould Lofting) | 3 | 6 | 5 | Draw2 | | SHOP | Workshop Theory and Practices | 2 | 3 | 3 | None | | PE3 | Physical Fitness | 2 | 0 | 2 | None | | | Sub-Total: | 18 | 15 | 23 | | # SECOND YEAR Second Semester | Course | Danada Para Tilla | | Hours | Pre- | | |---------|---|------------|------------|--------------|-----------| | Code | <u>Descriptive Title</u> | <u>LEC</u> | <u>LAB</u> | <u>UNITS</u> | requisite | | NGEC 11 | Arts and Humanities | 3 | 0 | 3 | NGEC10 | | NGEC 12 | The Life and Works of Dr. Jose Rizal | 3 | 0 | 3 | | | MARE 2 | Marine Engineering 2 | 3 | 3 | 4 | MARE 1 | | MECH 1 | Static of Rigid Bodies | 3 | 0 | 3 | None | | NA 2 | Ship Hydrostatics | 3 | 0 | 3 | NA 1 | | SHIP 2 | Ship Modeling 2 (Computer-aided Design) | 2 | 3 | 3 | SHIP1 | | THERMO1 | Thermodynamics 1 | 3 | 0 | 3 | None | | PE4 | Physical Fitness | 2 | 0 | 2 | None | | | Sub-Total: | 22 | 6 | 24 | | # THIRD YEAR First Semester | Course | I)OSCINTIVO LITIO | | Hours | Pre-requisites | | |-------------|------------------------------------|----|------------|----------------|----------| | <u>Code</u> | | | <u>LAB</u> | <u>UNITS</u> | | | CALC 3 | Differential Equation | 3 | 0 | 3 | CALC 2 | | MARE 3 | Marine Auxiliary Generating System | 4 | 3 | 5 | MARE 2 | | MECH2 | Mechanics of Deformable Bodies | 3 | 0 | 3 | MECH 1 | | NA3 | Ship Resistance | 3 | 3 | 4 | NA2 | | ELECTRO | Basic Electronics | 2 | 3 | 3 | None | | STRUC | Structural Theory | 3 | 0 | 3 | EMAT 1 | | THERMO 2 | Thermodynamics 2 | 3 | 0 | 3 | THERMO 1 | | | Sub-Total: | 21 | 9 | 24 | | # THIRD YEAR Second Semester | Course | Descriptive Title | Hours | | | D | |-------------|------------------------------|-------|------------|--------------|----------------| | <u>Code</u> | Code Descriptive Title | | <u>LAB</u> | <u>UNITS</u> | Pre-requisites | | EE2 | DC and AC Machinery | 3 | 3 | 4 | EE1 | | ELEC 1 | General Engineering Elective | 3 | 0 | 3 | | | ENVIRON | Environmental Engineering | 2 | 0 | 2 | None | | FMECH | Fluid Mechanics | 3 | 0 | 3 | THERMO 2 | | MARE 4 | Marine Auxiliary System | 3 | 0 | 3 | MAR3 | | MECH 3 | Dynamics of Rigid Bodies | 2 | 0 | 2 | MECH2 | | NA 4 | Intact Stability | 3 | 3 | 4 | NA3 | | NGEC 8 | SEC 8 Ethics | | 0 | 3 | None | | Sub-Total: | | | 6 | 24 | | ### Practicum/OJT * Total of 320 Hours * To be taken preferably after the 2^{nd} and/or 3^{rd} year, and supported by duly accomplished and approved NAME Training Record Booklet. # FOURTH YEAR First Semester | <u>Course</u>
<u>Code</u> <u>Descriptive Title</u> | | Hours | | | Dra va suriaita | |---|-------------------------------------|------------|------------|--------------|-----------------------------| | | | <u>LEC</u> | <u>LAB</u> | <u>UNITS</u> | Pre-requisite | | KMATICS | Kinematics and Dynamics of Machines | 2 | 3 | 3 | NONE | | MARE5 | Ship Propulsion | 3 | 3 | 4 | MARE 4 | | NA 5 | Damage Stability | 3 | 6 | 5 | NA4 | | NA 6 | Ship Structural Analysis and Design | | 6 | 5 | STRUC | | NA 7 | Motion in Waves | | 0 | 2 | NA 3 | | NA 8 | Ship Design 1 | 2 | 9 | 5 | Prereq: NA 1,
2, 3 and 4 | | | | | | | Coreq: NA 5, 6
and MarE5 | | Sub-Total: | | | 27 | 24 | | # FOURTH YEAR Second Semester | Course | Descriptive Title | Hours | | | Dro roquisito | |----------------------------|---|------------|------------|--------------|---------------| | <u>Code</u> | <u>Descriptive Title</u> | <u>LEC</u> | <u>LAB</u> | <u>UNITS</u> | Pre-requisite | | MARLAW | Maritime Laws, Rules & Regulations and Code of Ethics | 3 | 0 | 3 | NGEC8 | | MGMT 1 | Engineering Management | 3 | 0 | 3 | None | | NA 9 | Ship Design 2 | 2 | 9 | 5 | NA 8 | | NA 10 | Shipyard Processes and Management | 2 | 3 | 3 | None | | NA 11 | Contracts and Specifications | 3 | 0 | 3 | None | | NA 12 | Marine Inspections & Surveys | 2 | 3 | 3 | None | | ECON Engineering Economics | | 3 | 0 | 3 | None | | | Sub-Total: | 18 | 15 | 23 | | ### SECTION 15 Practicum/On-the-Job-Training Practicum/OJT is an immersion program wherein the students will have the chance and opportunity to work with the industry. This program is important because the students will have the chance to apply the skills, knowledge and attitude learned in school and at the same time the opportunity to experience the working environment. Learning expectations in the naval architecture and marine engineering field should be established between the HEIs and the industry. The Practicum/OJT is comprised of 320 hours and is required to be taken preferably after the fourth year, but prior to his graduation. ### SECTION 16 Sample Curriculum Map and Course Specification Refer to **Annex I** for the minimum Program Outcome Mapping. HEI's may develop their own Curriculum Map. The course specifications for further for BSNAME program are contained in **Annex II** of this PSG. ### **SECTION 17 Sample Means of Curriculum Delivery** Appropriate use of teaching-learning strategies through a constructivist and learner-centered paradigm to facilitate the acquisition of the required competencies. Under this paradigm, the student is the subject of the learning process enabling the learner to achieve his/her full potentials. The teaching-learning process is interactive, participatory, collaborative and experiential emphasizing the connection among courses to achieve a seamless integration towards holistic learning. Curriculum delivery may vary on the classroom level. Hence, it shall show contribution of the courses/topics to the attainment of program and learning outcomes. The following teaching and learning activities may be utilized in the course delivery, but not limited to: - 1. Peer/Team Teachina - 2. Micro-teaching - 3. Film/Video Viewing - 4. Interactive Learning - 5. Reporting - 6. Brainstorming - 7. Class Discussion/Question and Answer Technique - 8. Panel Discussion - 9. Focused Group Discussion - 10. Workshop Activity - 11. Buzz Session - 12. Concept/Mind Mapping - 13. Gallery Walk - 14. Research Project - 15. Seminar/Symposium - 16. Debate - 17. Study Tour ### SECTION 18 The Course Syllabus must contain at least the following components: - 18.1 General Course Information (Title, Description, Credit Units, Prerequisites) - 18.2 Links to Program Outcomes - 18.3 Course Outcomes - 18.4 Course Outline (Including Unit Outcomes) - 18.5 Teaching and Learning Activities - 18.6 Assessment Methods - 18.7 Grading System - 18.8 Learning Resources ### ARTICLE VII REQUIRED RESOURCES ### **SECTION 19 Leadership and Institutional Support** Leadership and institutional support must be adequate to ensure the quality and continuity of the program. Resources like institutional services, financial support and staff shall be provided to the program in order: - 19.1 to attract, retain and provide for the continued professional development of qualified faculty; - 19.2 to acquire, maintain and operate infrastructures, facilities and equipment that provide an environment in which student outcomes can be attained. ### **SECTION 20. Program Administration** - 20.1 Composition A well-organized and competent faculty and staff shall administer the implementation of BSNAME program and should meet the requirements set by the Commission. There shall be sufficient number of competent faculty to cover all of the curricular areas of the program as well as to assure adequate levels of student-faculty interaction and student advising and counseling. - **20.2** A Higher Education Institution (HEI) offering maritime programs shall have a full-time administrator that will administer the program. This administrator can be a Dean, Department Head, Director, Coordinator or equivalent depending on the organizational structure of the HEI. Faculty involvement in the implementation of the program shall also be encouraged. **20.3 Qualifications of the Dean** - A Dean/Head shall be appointed to provide general administration, leadership and direction to the BSNAME program of the institution. ### **20.3.1** Minimum Qualifications: - a. Holder of a Bachelor of Science degree in Naval Architecture and Marine Engineering and holder of a Master's degree preferably in academic management or in any related field. - b. Must be a registered naval architect and marine engineer with valid license and a bonafide member of a professional organization duly accredited by the Professional Regulation Commission. - c. Must have at least two (2) years experience in professional practice with at least two (2) years teaching experience. ### **SECTION 21. Grading System** ### 21.1 Bases for Grading The final grade or rating given to student shall be based solely on his/her scholarly performance in any course. Any adjustment diminution to the final grade for co-curricular activities, attendance or misconduct shall not be allowed. Any final grade given to a student may be reviewed in accordance with institutional academic processes. Scholarly performance shall be measured by any of the following: - 1. Lecture Component - 1) Written Examinations - 2) Oral Examinations - 3) Research works - 4) Outputs such as project, portfolio, and others - 2. Laboratory Component - 1) Scientific and Technical Experiments - 2) Demonstration of competences acquired ### 21.2. Requirements for promotion The promotion of a student from any curricular or component course towards graduation shall strictly comply with the conditions or requirements as follows: - A student shall be given the necessary academic credits towards the completion of, or graduation from BSNAME program, provided that he/she has enrolled in the program; has satisfactorily complied with the admission requirements, has faithfully and regularly attended classes, and has acquired the expected proficiency required in the curricular or component subject of the program. - 2. A student shall be promoted or permitted to enroll in advanced or specialized courses provided that, he/she has satisfactorily passed the basic and pre-requisite course(s), except otherwise provided in this CMO, MORPHE or by the Commission. - 3. A student shall earn academic credits for promotion towards graduation, provided he/she garners a final grade of at least fifty percent (50%) or its equivalent in curricular or component course, as determined by proper institution authorities on academics. - 4. The scholastic records of every student shall be filed with the institution until the close of the next academic term, for reference or examination in case of any grievance or complaint. ### 21.3 Requirements for Grading The grading system for a student in curricular or component courses shall strictly comply with the conditions or requirements as follows: - 1. No provisional, conditional or temporary final grade for any curricular or component course shall be given to a student. - 2. In case a student fails to take a final examination or submit an academic requirement for completion of a course and that his/her scholastic performance is not sufficient to merit a final passing grade, an institution may, consistent with its academic policies, give the student final grade which does not earn any academic credit nor indicates failure such as "NC" for "No Credit" or "NG" for "No Grade". Such a grade is permanent and cannot be subsequently changed. Provided however, that where the requirements, is due to excusable grounds, such as sickness, emergency, or accident, the student may be given an incomplete mark or "INC". Provided further, that the institution allows special or completion examinations, or additional time for compliance of the requirements. In no case shall an incomplete or "INC" mark remain for more than one (1) academic year. - 3. The passing standard shall be the grade of 50%. However, the institution may raise the passing standard. To get the percentile grade, the number of correct answers called raw score shall be divided by the total number of test points and multiplied by 100. Percentage (%) is used in determining and expressing a student's raw scores in every examination. The table below shows a sample of the range of percentage marks and their corresponding equivalents. | Percentage
Grade | Letter
Grade | Descriptive
Rating | Five Point
Grading | Remarks | |---------------------|-----------------|-----------------------|-----------------------|--| | 90 – 100 % | Α | Excellent | 1 | Meets minimum competence with exceptional score | | 80 – 89 % | В | Very Good | 1.5 | Meets minimum competence with over and above average score | | 70 – 79 % | С | Good | 2 | Meets minimum competence with the above average | | 60 – 69 % | D | Satisfactory | 2.5 | Meets minimum competence with the average score | | 50 – 59 % | Е | Pass | 3 | Meets minimum competence | | 0 – 49 % | F | Fail | 5 | Does not meet the minimum competence | 4. The transmutation of grades shall NOT be allowed. ### **SECTION 22 Faculty and Staff** ### 22.1 General Requirements #### 22.1.1 Qualifications - a. Faculty teaching naval architecture and marine engineering courses must be a holder of BSNAME degree. He/she must be a registered naval architect and marine engineer with valid license and a bonafide member of a professional organization duly accredited by the Professional Regulation Commission. - b. Faculty teaching general education courses and core courses must be a holder of a related professional degree. He/she must be registered professional with valid license and a bonafide member of a professional organization duly accredited by the Professional Regulation Commission as appropriate. - c. For both cases above faculty must have at least two (2) year's experience in professional practice. - d. Technical, laboratory and support staff should be sufficient in number and must have adequate qualifications and experience to ensure that there is satisfactory level of support in shops, maintenance of equipment, management of laboratories and general administration of the program. - **22.1.2 Teaching Load** The teaching load and responsibility of each faculty member shall be limited only within the area of his/her specific training and /or professional experience. ### 22.1.3 Faculty and Staff Development. The institution must have a system of staff development according to IRR of 10698. It should encourage the faculty to shift from a teaching to a learning-centered education paradigm. It should also motivate the faculty to: - 1. Pursue graduate studies - 2. Attend seminars, symposia and conferences for continuing education and industrial interaction - 3. Undertake research activities and to publish their research output - 4. Give lectures and present papers in national/international conferences, symposia and seminars. The institution must provide opportunities and incentives such as: - 1. Orientation/competency enhancement for paradigm shift of the teacher as facilitator of learning. - 2. Tuition fee subsidy for graduate studies - 3. Study leave with pay - 4. De-loading to finish a thesis or carry out research activities - 5. Travel grants for academic development activities such as special skills training and attendance in national/international conferences, symposia and seminars. - 6. Awards and recognition ### 22.2 Evaluation of Faculty Educational Contributions The institutions must establish an evaluation method to determine the educational contributions of each faculty member and which shall provide an opportunity for faculty members to be involved in the program. This evaluation shall be implemented in accordance with the established method(s). ### **SECTION 23 Library** The personnel, facilities and holdings shall conform to existing CHED requirements for libraries which are embodied in a separate CHED issuance. The institution is likewise encouraged to maintain periodicals and other non-print materials relevant to BSNAME program to aid the faculty and students in their academic work. Further, libraries shall participate in inter-institutional activities and cooperative programs whereby resource sharing is encouraged. ### **SECTION 24 Facilities and Equipment** a. Laboratory requirements (See **ANNEX IV** Chemistry and Physics Laboratory Equipment and **ANNEX V** BSNAME Professional Laboratory Equipment). Laboratories should conform to existing requirements as specified by law (RA 6541, "The National Building Code of the Philippines" and Presidential Decree 856, "Code of Sanitation of the Philippines"). - b. Class Size - 1. For lecture classes, ideal size is 35 students per class, maximum is 50. - 2. For laboratory and research classes, class size shall be specific to the discipline to be stated in the policies and standards. - 3. Special lectures with class size more than 50 may be allowed as long as the attendant facilities are provided. - c. Educational Technology Centers The institution should provide facilities to allow preparation, presentation and viewing of multi-media materials to support instruction. ### SECTION 25 Student Admission, Progress Monitoring and Graduation The basic requirement for eligibility for admission of a student to any tertiary level degree program shall be graduation from the secondary level recognized by the Department of Education HEI's must specify admission, transfers, progression, student progress monitoring and performance evaluation requirements. They should ensure and document that all students are advised on curricular and career matters, academic exchange, promotion and graduation to ensure that students continually achieve desired learning outcomes and that they meet all the requirements for promotion and graduation. ### SECTION 26 Extension, Community-Oriented Programs and Industry Linkage - **26.1 Extension Service** the program shall provide for non-degree educational services such as short courses on new technologies and new professional topics to assist students in keeping abreast of new developments in the industry. Such short courses may provide summaries of findings from research of faculty and developed in collaboration among industry and engineering societies. - **26.2 Community-Oriented Programs** students and/or student organizations shall have programs to assist communities like assistance to high school students on science fairs, contributing to local communities by assisting to design low-cost projects for their benefit, utilizing their technological expertise. The community needs should be determined first. - 26.3 Industry-Academe Linkage the institution shall organize regular and active participation of the industry in planning, defining and improving program educational objectives, student outcomes and curricula to ensure that these remain relevant and up-to-date with the society and professional requirements. Faculty and student should have industry exposure like internships, visits, collaborative projects supervised by industry professionals or industry-based final year projects. # ARTICLE IX COMPLIANCE OF HEIS Using the **CHED Implementation Handbook for OBE and ISA** as reference, a HEI shall develop the following items which will be submitted to CHED when they apply for a permit for a new program or the approval of the transformation of existing programs to outcomes-based framework: - **SECTION 27** The complete set of **program outcomes**, including its proposed additional program outcomes. - **SECTION 28** Its proposed **curriculum**, and its justification including a curriculum map. - **SECTION 29** Proposed **performance indicators** for each outcome. Proposed measurement system for the level of attainment of each indicator. - **SECTION 30** Proposed **outcomes-based syllabus** for each course. - **SECTION 31** Proposed system of program assessment and evaluation - **SECTION 32** Proposed system of program Continuous Quality Improvement (CQI) # ARTICLE X TRANSITORY PROVISION All HEIs with existing permit or recognition to offer are hereby given a non-extendible period of three (3) years from the date of effectivity hereof, within which to fully comply with this PSG. # **ARTICLE XI SANCTION** For violation of this Order, the Commission may impose such administrative sanction, as it may deem appropriate pursuant to the pertinent provisions of RA 7722, in relation to Section 69 of BP 232 otherwise known as Education Act of 1982, Manual of Regulations for Private Higher Education of 2008 (MORPHE) and other related laws. # ARTICLE XII SEPARABILITY AND REPEALING CLAUSES Any provision of this Order, which may thereafter be held invalid, shall not affect the remaining provisions. All CHED issuances or part thereof inconsistent with the provision in this CMO shall be deemed modified or repealed. # ARTICLE XIII EFFECTIVITY | This order shall take effect starting AY 201201_ | after its publication in the | |---|------------------------------| | official Gazette or Newspaper of General Circulation. | | | | | | Quezon City | , Philippines | | |-------------|---------------|--| | | | | For the Commission: J. PROSPERO E. DE VERA III, DPA Chairman